

Satisfiability over Cross Product is $\mathcal{NP}^{\circ}_{\mathbb{R}}$ -complete

Christian Herrmann, Johanna Sokoli, Martin Ziegler

Reminder: Complexity Theory

```
P := \{ L \subseteq \{0,1\}^* \text{ decidable in polynomial time } \}
\subseteq \mathcal{NP} := \{ L \text{ verifiable in polynomial time } \}
```

 $\subseteq PSPACE := \{ L \text{ decidable in polyn. space } \}$

Def: Call L verifiable in polynomial time if

 $L = \{ \underline{x} \in \{0,1\}^n \mid n \in \mathbb{N}, \exists \underline{y} \in \{0,1\}^{q(n)} : \langle \underline{x},\underline{y} \rangle \in V \}$ discrete "witness" for some $V \in \mathcal{P}$ and $q \in \mathbb{N}[N]$.
Examples:

2SAT = $\{\langle \Phi \rangle :$ Boolean formula Φ in **2-CNF** admits a satisfying assignment $\}$ $\in \mathbf{P} \in \mathbf{NP}$

3COL = $\{\langle G \rangle : \text{graph } G \text{ admits a 3-coloring}\} \in \mathcal{NP}$ **HC** = $\{\langle G \rangle : G \text{ has a Hamiltonian cycle}\} \in \mathcal{NP}$

EC = $\{\langle G \rangle : G \text{ has a Eulerian cycle } \} \in \mathcal{P} \in \mathcal{NP}$

Reminder: NP-completeness

- $P := \{ L \subseteq \{0,1\}^* \text{ decidable in polynomial time } \}$ $\subseteq \mathcal{NP} := \{ L \text{ verifiable in polynomial time } \}$
- **Def: Polynom. reduction** from A to $B \subseteq \{0,1\}^*$ is a $f:\{0,1\}^* \to \{0,1\}^*$ computab. in polytime such that $\underline{x} \in A \Leftrightarrow f(x) \in B$. Write $\underline{A} \preceq_{\mathbf{D}} B$.

P

- $A \leq_{\mathbf{p}} B$, $B \leq_{\mathbf{p}} C \Rightarrow A \leq_{\mathbf{p}} C$
- $\bullet A \leq_{\mathbf{p}} B, \quad B \in \mathcal{P} \implies A \in \mathcal{P}$
- For any $L \in \mathcal{NP}$, $L \leq_p SAT$ (S. Cook / L. Levin 70ies)
- SAT ≺ 3SAT. HC. 3COL..

Turing vs. BSS Machine

Discrete: Turing Machine / Random-Access Machine (TM/RAM)

Input/output: finite sequence of bits {0,1}* or integers **Z***

Each memory cell holds one element of $R=\{0,1\} / R=\mathbb{Z}$

`Program' can store finitely many constants from R

operates on R (for TM: \vee , \wedge , \neg ; for RAM: +, -, \times , <)

Computation on algebras/structures [Tucker&Zucker], [Poizat]

on \mathbb{R}^* := $U_k \mathbb{R}^k$: Algebra ($\mathbb{R},+,-,\times,\div,<$) \rightarrow real-RAM, BSS-machine

[Blum&Shub&Smale'89], [Blum&Cucker&Shub&Smale'98]

 $\mathcal{P}_{\mathbb{R}}^{\mathbf{0}} \subseteq \mathcal{N}\mathcal{P}_{\mathbb{R}}^{\mathbf{0}} \subseteq \mathcal{E}\mathcal{X}\mathcal{P}_{\mathbb{R}}^{\mathbf{0}}$ (Tarski Quantifier Elimination) strict?

NP_R-complete: Does a given rient/polynom.system have a real root?

ℍ ⊆ ℝ* real Halting problemUndecidable, too: MandelbrotSet, Newton starting points

Turing vs. BSS Complexity

 $\mathcal{NP}_{\mathbb{R}}^{\circ}$ -complete: Does a given multivariate integer polynomial have a real root?

Theorem [Canny'88, Grigoriev'88, Heintz&Roy& &Solerno'90, Renegar'92]: $\mathcal{NP}_{\mathbb{R}}^{\circ} \subseteq \mathcal{PSPACE}$ ("efficient real quantifier elimination")
No 'better' (e.g. in \mathcal{PH}) algorithm known to-date!

(Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen'06: $\mathcal{P}_{\mathbb{R}}^{\circ} \subseteq \mathcal{CH}$)

Similarly with integer root: undecidable (Matiyasevich'70) Similarly with rational root: unknown (e.g. Poonen'09) Simil. with complex root: $coRP^{NP} \mod \mathbf{GRH}$ (Koiran'96)

NP_R-Completeness

QSAT^o: Given a term $t(X_1,...X_n)$ over \vee , \wedge , \neg , does it have a satisfying assignment over subspaces of $\mathbb{R}^3/\mathbb{C}^3$? \subset C.Herrmann& M.Z. 2011

FEAS $_{\mathbb{R}}^{0}$: Given a system of n-variate integer polynomial in-/equalities, does it have a real solution?

CONV^o_R: ..., is the solution set convex?

Today:

The following problem is $\mathcal{NP}^0_{\mathbb{R}}$ -complete:

Given a term $t(X_1,...X_n)$ over \times only,

does the equation $t(X_1,...X_n) = X_1$

have a solution over $\mathbb{R}^3 \setminus \{0\}$?

COMPLEXITY
AND REAL
COMPUTATION

r'91

t'99

2010

Cross Product in R³

$$(a_x,a_y,a_z)\times(b_x,b_y,b_z)=(a_y\cdot b_z-a_z\cdot b_y,a_z\cdot b_x-a_x\cdot b_z,a_x\cdot b_y-a_y\cdot b_z)$$

anti-commutative, non-associative.

Decision Problems with Cross Product

- **Theorem:** a) to c) and a') to b') are all equivalent to **Polynomial Identity Testing** $\in \mathcal{RP}$ (*randomized polytime with one-sided error,* Schwartz-Zippel) d) to f) are all $\mathcal{NP}_{\mathbb{R}}^0$ -complete
- d') to f') are equivalent to Hilbert's 10th Problem over Q
- In particular there exists a cross product equation $t(v_1,...v_n)=v_1\neq 0$ satisfiable over \mathbb{R}^3 but not over \mathbb{Q}^3 .
- c) Is there an assignment $v_j \in \mathbb{R}^3$ s.t. $t(v_1,...v_n) = e_z$?
- d) Is there an assignment $v_j \in \mathbb{R}^3$ s.t. $t(v_1,...v_n) = v_1 \neq 0$?
- e) Is there an assignment $v_i \in \mathbb{R}^3$ s.t. $t(v_1,...) \approx v_1 \neq 0$?
- f) Is there an assignment $v_j \in \mathbb{R}^3$ s.t. $t(v_1,...v_n) \approx s(v_1,...v_n)$?
- a') to f') similarly but for assignments $\in \mathbb{Q}^3$

Proof (Sketch, hardness)

QUAD_R (Does given $p \in \mathbb{Z}[X_1,...X_n]$ have a real root?) $\leq_p e$)
e) Is there an assignment $v_j \in \mathbb{F}^3$ s.t. $t(v_1,...v_n) \approx v_1 \neq 0$?

For any right-handed ortho *go*nal basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ of \mathbb{F}^3 and for $r,s \in \mathbb{F}$, the following are easily verified:

- (e₁-r⋅s e₂) = e₃ × [(e₃-r⋅e₂) × (e₁-s⋅e₃)] Encode s∈F
 (e₁-s⋅e₃) = e₂ × [(e₂-e₃) × (e₁-s⋅e₂)] as projective
- $-(\mathbf{e}_1 s \cdot \mathbf{e}_3) = \mathbf{e}_2 \times [(\mathbf{e}_2 \mathbf{e}_3) \times (\mathbf{e}_1 s \cdot \mathbf{e}_2)]$ as projective $-(\mathbf{e}_3 s \cdot \mathbf{e}_2) = \mathbf{e}_1 \times [(\mathbf{e}_1 \mathbf{e}_3) \times (\mathbf{e}_1 r \cdot \mathbf{e}_2)]$ point $\mathbb{F}(\mathbf{e}_1 s \cdot \mathbf{e}_2)$
- \mathbf{e}_1 -(r-s)• $\mathbf{e}_2 = \mathbf{e}_3 \times \left[\left(\left[(\mathbf{e}_2 \mathbf{e}_3) \times (\mathbf{e}_1 r \cdot \mathbf{e}_2) \right] \times \left[\mathbf{e}_2 \times (\mathbf{e}_1 s \mathbf{e}_3) \right] \right) \times \mathbf{e}_3 \right]$
- $(\mathbf{e}_1 \mathbf{e}_3) = \mathbf{e}_2 \times [(\mathbf{e}_1 \mathbf{e}_2) \times (\mathbf{e}_1 \mathbf{e}_3)]$

Can thus express the arithmetic operations - and - using the cross product and \mathbf{e}_1 and \mathbf{e}_2 and $(\mathbf{e}_1 - \mathbf{e}_2)$ and $(\mathbf{e}_2 - \mathbf{e}_3)$

Proof (Sketch, hardness)

QUAD_R (Does given $p \in \mathbb{Z}[X_1,...X_n]$ have a real root?) $\leq_p e$)
e) Is there an assignment $v_j \in \mathbb{F}^3$ s.t. $t(v_1,...v_n) \approx v_1 \neq 0$?

e) Is there an assignment $v_j \in \mathbb{F}^3$ s.t. $t(v_1,...v_n) \approx v_1 \neq 0$?

For any right-handed orthogonal basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$

of \mathbb{F}^3 , can express – and \cdot using cross product and $\mathbb{F}e_1$ and $\mathbb{F}e_2$ and $\mathbb{F}(e_1-e_2)$ and $\mathbb{F}(e_2-e_3)$. Encode $s \in \mathbb{F}$ as projective point $\mathbb{F}(e_1-s \cdot e_2)$

 $V_{23}(A,B,C)$ that for any assignment $A,B,C \in \mathbb{P}^2\mathbb{F}$, either coincide with $\mathbb{F}\mathbf{e}_1 = A$ and $\mathbb{F}\mathbf{e}_2$ and $\mathbb{F}(\mathbf{e}_1 - \mathbf{e}_2)$ and $\mathbb{F}(\mathbf{e}_2 - \mathbf{e}_3)$ for some right-handed orthogonal basis \mathbf{e}_i — or evaluate to $\mathbf{0}$. Using these terms, one can express (in polytime) any

given $p \in \mathbb{Z}[X_1,...,X_n]$ as term $t_p(Y_1,...,Y_n;A,B,C)$ over \times s.t. $p(s_1,...,s_n)=0 \Leftrightarrow t_p(\mathbb{F}(\mathbf{e}_1-s_1\cdot\mathbf{e}_2),...,\mathbb{F}(\mathbf{e}_1-s_n\cdot\mathbf{e}_2);A,B,C)=A$

Conclusion

- Identified a new problem complete for $\mathcal{NP}^{0}_{\mathbb{R}}$
- defined over × only, i.e. conceptionally simplest
 normal form for equations over ×: t(Z₁,...,Z_n)=Z₁
- $\mathcal{N}P^{\text{o}}_{\mathbb{R}}$ is an important Turing (!) complexity class as $\mathcal{N}P$ currently developping into similarly rich structural theory [Baartse&Meer'13] PCP Theorem for $\mathcal{N}P$ over the Reals
- **Question:** Graph Coloring being \mathcal{NP} -complete, how about *Quantum* Graph Coloring? [LeGall'13]

Using these terms, one can express (in polytime) any given $p \in \mathbb{Z}[X_1,...,X_n]$ as term $t_p(Y_1,...,Y_n;A,B,C)$ over $x \in L$ s.t. $p(s_1,...,s_n)=0 \Leftrightarrow t_p(\mathbb{F}(\mathbf{e}_1-s_1\cdot\mathbf{e}_2),...,\mathbb{F}(\mathbf{e}_1-s_n\cdot\mathbf{e}_2);A,B,C)=A$